관심 영역(Region of Interest, ROI) 표시하기. import numpy as np array = np.zeros((1280,1920,3), np.uint8)//y,x,channal x,y,w,h = 100,100,300,300 //시작점 크기 roi=array[x:x+w,y:y+h] //roi 자른다 print(array.shape) print(roi.shape) (1280, 1920, 3) (300, 300, 3) 관심채널 : COI import numpy as np array = np.zeros((1280,1920,3), np.uint8)//y,x,channal coi = array [:,:,0] //채널을 하나만 선택해서 용량을 줄인다. print(array.shape) print..
import cv2 import numpy as np image =cv2.imread("mountain.jpg") gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) result= np.zeros((image.shape[0],256),dtype = np.uint8) hist = cv2.calcHist([image],[0],None,[256],[0,256]) cv2.normalize(hist,hist,0,255,cv2.NORM_MINMAX) for x,y in enumerate(hist):cv2.line(result,(int(x),image.shape[0]),(int(x),image.shape[0]-int(y)),255) dst = np.hstack([image[:,:,0],..
- Total
- Today
- Yesterday
- TouchDesigner
- MQTT
- Express
- oculuspro
- 후디니
- Arduino
- 라즈베리파이
- runwayai
- ai film
- houdini
- AI
- google ai studio
- docker
- CNC
- RNN
- Python
- krea
- Midjourney
- sequelize
- opencv
- DeepLeaning
- VR
- Java
- ai image generator
- node.js
- three.js
- Unity
- 유니티
- colab
- imgtoimg
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |